A Practical Univariate Polynomial Composition Algorithm
نویسندگان
چکیده
We revisit a divide-and-conquer algorithm, originally described by Brent and Kung for composition of power series, showing that it can be applied practically to composition of polynomials in Z[x] given in the standard monomial basis. We offer a complexity analysis, showing that it is asymptotically fast, avoiding coefficient explosion in Z[x]. The algorithm is straightforward to implement and practically fast, avoiding computationally expensive change of basis steps of other polynomial composition strategies. The algorithm is available in the open source FLINT C library and we offer a practical comparison with the polynomial composition algorithm in the MAGMA computer algebra system.
منابع مشابه
Practical Divide-and-Conquer Algorithms for Polynomial Arithmetic
We investigate two practical divide-and-conquer style algorithms for univariate polynomial arithmetic. First we revisit an algorithm originally described by Brent and Kung for composition of power series, showing that it can be applied practically to composition of polynomials in Z[x] given in the standard monomial basis. We offer a complexity analysis, showing that it is asymptotically fast, a...
متن کاملImproved Univariate Microaggregation for Integer Values
Privacy issues during data publishing is an increasing concern of involved entities. The problem is addressed in the field of statistical disclosure control with the aim of producing protected datasets that are also useful for interested end users such as government agencies and research communities. The problem of producing useful protected datasets is addressed in multiple computational priva...
متن کاملFast polynomial factorization, modular composition, and multipoint evaluation of multivariate polynomials in small characteristic
We obtain randomized algorithms for factoring degree n univariate polynomials over Fq that use O(n + n log q) field operations, when the characteristic is at most n. When log q < n, this is asymptotically faster than the best previous algorithms (von zur Gathen & Shoup (1992) and Kaltofen & Shoup (1998)); for log q ≥ n, it matches the asymptotic running time of the best known algorithms. The im...
متن کاملThe complexity of factoring univariate polynomials over the rationals
This tutorial will explain the algorithm behind the currently fastest implementations for univariate factorization over the rationals. The complexity will be analyzed; it turns out that modifications were needed in order to prove a polynomial time complexity while preserving the best practical performance. The complexity analysis leads to two results: (1) it shows that the practical performance...
متن کاملFunctional Decomposition
This paper presents a polynomial time algorithm for determining when a univariate rational function is the composition of two rational functions, and, if so, nds those rational functions. This algorithm is valid for rational functions over arbitrary elds and thus also resolves an outstanding problem: polynomial decomposition over elds of nite characteristic. In addition, we present a framework ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009